Лични алати
Пријави се
Трага: Дома ФЕИТ Студиски програми II циклус (магистерски) Нови постдипломски студии - 2018/2019 Наменски компјутерски системи (НКС) Напредна анализа на податоци со методи од машинско учење

Напредна анализа на податоци со методи од машинско учење

Предмет: Напредна анализа на податоци со методи од машинско учење

Код: 3ФЕИТ07008

Број на ЕКТС кредити: 6 ЕКТС

Неделен фонд на часови: 3+0+0+3

Наставник: Доц. д-р Христијан Ѓорески

Цели на предметната програма (компетенции): Анализа на структурирани и неструктурирани податоци. Работа со алгоритми од вештачка интелигенција, машинско учење и длабоко учење.

Содржина на предметната програма: Напредна анализа на различни типови на податоци, вклучувајќи: структурирани и неструктурирани податоци, временски серии, слики, звук, и сл. Обработка и анализа на податоците со користење на различни методи од областа на вештачката интелигенција, машинското учење и длабокото учење. Апликација на методите за анализа на податоците: пред-процесирање на податоците (филтрирање), екстракција на атрибути, градење на класификациски и регресиски модели, кластерирање, визуелизација на податоците и моделите, како и споредба на различни типови на евалуација на изградените модели. Имплементирање на алгоритмите и моделите со помош на Јава или Python околина (Weka, sklearn, tflearn, numpy, matplotlib, pandas, TensorFlow, Keras, Pythorch).

Литература:

Задолжителна литература

Бр.

Автор

Наслов

Издавач

Година

1

Ordóñez, F.J.; Roggen, D

Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition

Sensors  2016

2016

2

Vyas, N.; Farringdon, J.; Andre, D.; Stivoric, J.I.

Machinelearning and sensor fusion for estimating continuous energy expenditure

In Proceedings of the Innovative Applications of Artificial Intelligence Conference

2011

3

Hammerla NY, Halloran S, Plötz T.

Deep, Convolutional, and Recurrent Models for Human Activity Recognition Using Wearables

IJCAI 2016

2016

Дополнителна литература

Бр.

Автор

Наслов

Издавач

Година

1

Chavarriaga, R.; Sagha, H.; Calatroni, A.; Digumarti, S.; Tröster, G.; Millán, J.; Roggen, D.

The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition

Pattern Recognit. Lett. 2013

2013

2

Yu Guan, Thomas Ploetz

Ensembles of Deep LSTM Learners for Activity Recognition using Wearables

Ubicomp 2017

2017

3

Sebastian Munzner, Philip Schmidt, Attila Reiss, Michael Hanselmann, Rainer Stiefelhagen, Robert Durichen

CNN-based Sensor Fusion Techniques for Multimodal Human Activity Recognition

Ubicomp 2017

2017